Lentiviral Mediating Genetic Engineered Mesenchymal Stem Cells for Releasing IL-27 as a Gene Therapy Approach for Autoimmune Diseases
نویسندگان
چکیده
OBJECTIVE Autoimmune diseases precede a complex dysregulation of the immune system. T helper17 (Th17) and interleukin (IL)-17 have central roles in initiation of inflammation and subsequent autoimmune diseases. IL-27 significantly controls autoimmune diseases by Th17 and IL-17 suppression. In the present study we have created genetic engineered mesenchymal stem cells (MSCs) that mediate with lentiviral vectors to release IL-27 as an adequate vehicle for ex vivo gene therapy in the reduction of inflammation and autoimmune diseases. MATERIALS AND METHODS In this experimental study, we isolated adipose-derived MSCs (AD-MSCs) from lipoaspirate and subsequently characterized them by differentiation. Two subunits of IL-27 (p28 and EBI3) were cloned in a pCDH-513B-1 lentiviral vector. Expressions of p28 and EBI3 (Epstein-Barr virus induced gene 3) were determined by real time polymerase chain reaction (PCR). MSCs were transduced by a pCDH-CMV-p28-IRES- EBI3-EF-copGFP-Pur lentiviral vector and the bioassay of IL-27 was evaluated by IL-10 expression. RESULTS Cell differentiation confirmed true isolation of MSCs from lipoaspirate. Restriction enzyme digestion and sequencing verified successful cloning of both p28 and EBI3 in the pCDH-513B-1 lentiviral vector. Real time PCR showed high expressions level of IL-27 and IL-10 as well as accurate activity of IL-27. CONCLUSION The results showed transduction of functional IL-27 to AD-MSCs by means of a lentiviral vector. The lentiviral vector did not impact MSC characteristics.
منابع مشابه
Gene Delivery to Mesenchymal Stem Cells
There is increasing trend in using recombinant stem cells as novel therapeutic candidates in different diseases. These studies encompass different applications from targeted homing of Mesenchymal Stromal (stem) Cells (MSC), to arming them with different cytokines. Resistance to transfection or transduction methods had urged researchers to look for better gene delivery alternates and optimizing ...
متن کاملGene manipulation of human adipose-derived mesenchymal stem cells by miR-34a
Background: Safe and effective gene therapy is considered as one of the therapeutic goals in many diseases. Due to the important role of stem cells in cell therapy, this study aimed to produce human adipose-derived mesenchymal stem cells (hASCs) using the miR-34a overexpression. Materials and methods: The hsa-mir-34a precursor sequence was cloned into the PCDH lentiviral vector. The recombinant...
متن کاملImmunoregulatory Effects of Glutathione During Mesenchymal Stem Cell Differentiation to Hepatocyte-Like Cells
Background: The role of mesenchymal stem cell in cellular therapy is the subject of interest for many researchers. The differentiation potential of MSCs and abilities in modulations of the recipient’s immune system makes them important cells in tissue regenerative studies. MSCs by releasing the proinflammatory cytokines play important role in immunomodulatory systems; however the signaling path...
متن کاملGenetically Engineered Mesenchymal Stem Cells Stably Expressing Green Fluorescent Protein
Objective(s) Mesenchymal stem cells (MSCs) are nonhematopoietic stromal cells that are capable of differentiating into and contribute to the regeneration of mesenchymal tissues. Human mesenchymal stem cells (hMSCs) are ideal targets in cell transplantation and tissue engineering. Enhanced green fluorescent protein (EGFP) has been an important reporter gene for gene therapy. The aim of this stu...
متن کاملEvaluation of the Efficacy of Lentiviral Vectors in Gene Therapy of Beta-thalassemia Patients: A Systematic Review
Background Beta thalassemiais a genetic blood abnormality identified through mutations, which reduce the synthesis of the ß-globin chain. Gene therapy through Lentiviral vectors have cured many of genetic disorders. The purpose of this study was to investigate the efficacy of lentiviral vectors in treatment of ß-thalassemia a...
متن کامل